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Abstract. Harvesting energy from wind to supply low-power consumption devices has attracted numerous research interests in
recent years. However, a traditional vortex-induced vibration energy harvester can only operate within a limited range of wind
speed. Thus, how to broaden the effective wind speed range for energy harvesting is a challenging issue. In this paper, a slotted
cylinder bluff body is proposed for being used in the design of a wind energy harvester. The physical prototype is manufactured
and the wind tunnel test is performed for evaluating the actual performance of the prototyped energy harvester. The effect of
the orientation of the slot on the performance of the proposed energy harvester is experimentally investigated. As compared to
the traditional counterpart without the slot at the lateral side of the bluff body, the proposed energy harvester demonstrates the
superiority for realizing broadband energy harvesting. Due to the introduction of the slot, and by carefully tuning the orientation
of the slot, both the vortex-induced vibration and the galloping phenomena can be stimulated within two neighboring wind speed
ranges, leading to the formation of an extremely broad bandwidth for energy harvesting.
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1. Introduction

Fluid-induced vibration phenomenon has been widely investigated for the application in energy
harvesting in recent years [1–10], since it has a promising potential to replace traditional chemical bat-
teries for supplying low-power consumption devices e. g., wireless sensors and micro-electromechanical
systems (MEMS) [11–27]. Though there are several different means to make the mechanical-to-electrical
conversion, due to the ease of implementation and the high energy density, using piezoelectric materials
to convert fluid-induced vibration into electrical energy has attracted the most research interest. According
to the underlying mechanism, fluid-induced vibration can be further classified into galloping and vortex-
induced vibration. Wang et al. [28] studied a vortex-induced vibration piezoelectric energy harvester
(VIVPEH) and developed a lumped parameter model to describe the system. The matrix coefficient
method was used to obtain the vibration response and quasi-steady state form of the output voltage.
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Mehmood et al. [29] numerically investigated the vortex-induced vibration response at 96 ≤ Re ≤ 118 and
0.5 MΩ ≤ R ≤ 5 MΩ, the results showed that the load resistance has a significant effect on the oscillation
amplitude, lift coefficient and voltage output. It was demonstrated that there is an optimum value of the
load resistance for which the maximum harvested power can be achieved. Bernitsas et al. [30,31] firstly
proposed the basic concept of the vortex-induced vibration aquatic clean energy converter and fabricated
a physical prototype. They established a mathematical model and calculated the design parameters for
various application scales. Huynh et al. [32] studied a bistable vortex-induced vibration energy harvester
which was modelled as a four-dimensional autonomous continuous-time dynamical system. On the other
hand, compared with vortex-induced vibration based energy harvesters, galloping piezoelectric energy
harvesters (GPEH) normally can generate more energy from the surrounding environment. Yang et
al. [33] tested different bluff bodies with various cross-sections for galloping energy harvesting. Their
experimental results demonstrated that using square-sectioned bluff body yielded the lowest cut-in wind
speed of 2.5 m/s and the highest peak power of 8.4 mW. Hu et al. [34] experimentally studied the
performance of a galloping piezoelectric energy harvester with two small rod-shaped accessories installed
on a main cylinder. Results showed that the energy could be harvested continuously beyond the critical
wind speed and was dramatically superior over both the plain circular cylinder at circumferential locations
of 45° and 60°. In addition, Hu et al. [35] measured the aerodynamic force coefficients and found that the
circular cylinder with triangular rods at the location of 60° had larger transverse force coefficients than
the other two rod type cases. Recently, Wang et al. [36] experimentally and numerically investigated the
energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff
bodies.

Researches on wind energy harvesting using innovative structures have attracted lots of interests. Allen
et al. [37] proposed an “eel” shaped flow energy harvester. Later on, Cha et al. [38] designed a bionic fish
tail to harvest energy from its impact and then proposed a modeling framework for underwater vibration
of bionic tail. The feasibility of the model to obtain energy was predicted theoretically and validated
experimentally. Chen et al. [39] experimentally investigated the aerodynamic forces and flow structures
of bionic cylinders based on harbor seal vibrissa, and it was found that a drag reduction of 15% and a
maximum fluctuating lift suppression of 58% were achieved when the angle of the incoming airflow was
0°, which has a potential for the prospective application in the field of energy harvesting. Meanwhile,
Pan et al. [40] studied a circular cylinder with an opening and concave surface through experiment and
simulation. The results indicated an increase of the induction frequency of the modified cylinder from
2.7 to 2.9 Hz and the peak voltage from 0.35 to 0.41 V. In recent studies, Wang et al. [41,42] designed a
passive turbulence control (PTC) device and attached a “Y” shaped attachment to enhance wind energy
harvesting. Compared with smooth cylinder, the output power increased from 0.03 mW to 0.058 mW and
0.25 mW to 0.576 mW, respectively. Jin et al [43] added pits and hemispheric protrusions to the surface of
smooth cylinder and test in the wind tunnel, experimental results show that the threshold speed decelerates
from 1.8 m/s to 1 m/s, and the peak voltage reached 47 V. The abovementioned comparison revealed that
the complex non-uniform surface changing the regular vortex shedding process, which may also explain
the mechanism of shifting from VIV to galloping and the aerodynamic force response.

In the present work, an innovative slotted cylinder bluff body is investigated to enhance the wind energy
harvesting performance. The physical prototype is manufactured and tested in wind tunnel experiments
to explore the effect of the slot orientation direction on the performance of the energy harvester. The
rest of the paper is organized as follows. In Section 2, the general distributed parameter modelling
methods for the traditional vortex-induced vibration based energy harvester and galloping based energy
harvester are briefly reviewed. However, due to the untraditional design of the bluff body, the previous
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Fig. 1. Schematic of the proposed wind energy harvester.

equations for describing the aeroelastic forces caused by VIV and galloping can not be directly used.
In Section 3, we presented the prototyped physical model of the proposed energy harvester and the wind
tunnel experimental results. A parametric study is conducted for revealing the effect of the slot orientation
direction on the performance of the proposed energy harvester. Finally, Section 4 presents the relevant
conclusions and discussions.

2. System modelling

Figure 1 demonstrates the schematic of the proposed energy harvester which consists of a cantilevered
beam bonded with a piezoelectric transducer at the clamped end. A cylinder of mass Meqm and length L
is attached at the tip of the cantilevered beam for acting as the bluff body. A through slot of width d and
length L0 is machined at the lateral side of the cylinder. Assuming that the wind speed is of U and the
wind direction is along the x-axis, the orientation of the slotted cylinder is characterized by the angle 𝜃
between the slot and the wind direction. It is well known that around the fundamental natural frequency, the
cantilevered beam with tip mass (i.e., the bluff body) can be approximated as a single-degree-of-freedom
(SDOF) system. The effective stiffness and damping coefficient of the SDOF representation model are
denoted by Keqs and Ceqd , respectively. Cp, 𝛽 represent the clamped capacitance and electro-mechanical
coupling coefficient of the energy harvester. The piezoelectric transducer is shunted to a resistor Reqr.

2.1. Governing equations

For a general VIV based PEH, a distributed parameter model for describing the dynamic motion of the
electromechanical system can be given as [44–46]:

̈𝜂(𝑡) + 2𝜁𝜔𝑛 ̇𝜂(𝑡) + 𝜔𝑛
2𝜂(𝑡) + 𝜒𝑉 (𝑡) = 𝑓𝜂𝑣𝑖𝑣(𝑡) (1)
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where 𝜂(t) is the model coordinate, and the aeroelastic force caused by VIV can be expressed as

𝑓𝜂𝑣𝑖𝑣(𝑡) = 0.25𝐶𝐿𝜑(𝐿𝐶 )𝜌𝐷𝐿𝑈 2𝑞(𝑡) − 0.5𝐶𝐷𝜌𝐷𝐿𝑈𝜑2(𝐿𝐶 ) ̇𝜂(𝑡) (2)

in which CL, CD are constants that can be determined by wind tunnel tests, 𝜙(x) is the model shape
function of the cantilevered beam, LC is the length of the cantilevered beam, 𝜌 is the air density, and q (t)
is the variable in the Van Del Pol wake oscillator model for describing the VIV effect [43].

̈𝑞(𝑡) + 𝜀𝜔𝑓 [𝑞2(𝑡) − 1] ̇𝑞(𝑡) + 𝜔𝑓
2𝑞(𝑡) = 𝐴

𝐷𝜑(𝐿𝐶 ) ̈𝜂(𝑡) (3)

where 𝜖 and A are also constants and can be obtained experimentally. By introducing 𝜂(t)𝜙(LC) = y (t),
Meqm1 =1∕𝜙2(LC), 𝐶𝑒𝑞𝑑1 = 2𝜁1𝜔𝑛1/𝜙2(𝐿𝐶 ), 𝐾𝑒𝑞𝑠1 = 𝜔2

𝑛1/𝜙2(𝐿𝐶 ), 𝛽1 = 𝜒/𝜙(𝐿𝐶 ) and rearranging Eq. (3),
the reduced lumped parameter model can be obtained as follows [43].

𝑀𝑒𝑞𝑠1 ̈𝑦(𝑡) + (𝐶𝑒𝑞𝑑1 + 0.5𝐶𝐷𝜌𝐷𝐿𝑈) ̇𝑦(𝑡) + 𝐾𝑒𝑞𝑠1𝑦(𝑡) + 𝛽1𝑉 (𝑡) − 0.25𝐶𝐿𝜌𝐷𝐿𝑈 2𝑞(𝑡) = 0 (4)

̈𝑞(𝑡) + 𝜀𝜔𝑓 [𝑞2(𝑡) − 1] ̇𝑞(𝑡) + 𝜔𝑓
2𝑞(𝑡) = 𝐴

𝐷 ̈𝑦(𝑡) (5)

where Meam1 = (33∕140)M1 + M2, M1, M2 are the masses of the cantilevered beam and bluff body,
respectively. A good approximation for the aerodynamic force model is to assume it is solely dependent
on the instantaneous relative velocity and angle of attack. Note that the quasi-static hypothesis is only
applicable when the characteristic timescale of the flow is small as compared to the characteristic
timescale of the oscillation [47,48]. The resultant vertical aerodynamic force of GPEH system, f 𝜂galloping
is thus defined as [42]:

𝑓𝜂𝑔𝑎𝑙𝑙𝑜𝑝𝑖𝑛𝑔(𝑡) = 1
2

𝜑(𝐿𝐶 )𝜌𝐷𝐿𝑈 2
∑

𝑖=1,2,…
𝑎𝑖 [

̇𝜂(𝑡)𝜑(𝐿𝐶 )
𝑈 + 𝜑′(𝐿𝐶 )𝜂(𝑡)]

𝑖
(6)

where ai is a semi-empirical constant depending on the cross-sectional shape. Assuming that D ≪ LC,
the influence of the cantilever beam rotation angle is negligible, then 𝜙′(LC)𝜂(t) ≈0. Thus, the distributed
parameters model of galloping can be similarly simplified as

𝑀𝑒𝑞𝑚2 ̈𝑦(𝑡) + [𝐶𝑒𝑞𝑑2 − 1
2

𝑎1𝜌𝐿𝐷𝑈 − 1
2

𝑎3𝜌𝐿𝐷 ̇𝑦2(𝑡)
𝑈 ] ̇𝑦(𝑡) + 𝐾𝑒𝑞𝑠2𝑦(𝑡) + 𝛽2𝑉 (𝑡) = 0. (7)

2.2. Determination of equivalent lumped parameters

A prototype of the proposed energy harvester is manufactured and a wind tunnel test is performed to
determine the equivalent lumped parameters of the proposed energy harvester. The prototyped energy
harvester is as shown in Fig. 2(a). Figure 2(b) shows the enlarged view of the slotted cylinder bluff body
that is made of foam. The cross-sectional radius and length of the cylinder bluff body are 120 mm and
16 mm, respectively. The length and the width of the lateral slot are 50 mm and 8 mm, respectively.
According to the principle of piezoelectric effect, it is known that a larger stress generates a higher voltage.
The clamped root of the cantilevered beam obviously bears the maximum stress when it is deflected. Thus,
a piezoelectric sheet (MFC) is bonded onto the cantilevered beam at the clamped root to achieve the best
energy conversion performance.

Through the free-decay test, we can determine the fundamental natural frequency and the damping
ratio of the prototyped energy harvester. Fig. 2(c) shows the setup for the free-decay test. A laser sensor
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Fig. 2. (a) Installation of the prototyped energy harvester in the wind tunnel, (b) enlarged view of the slotted cylinder bluff body,
(c) free-decay test setup, (d) data acquisition system.

is used to measure the displacement. Figure 2(d) shows the setup of the data acquisition system. In the
experiment, the two electrodes of the piezoelectric transducer are connected to an oscilloscope which is
linked to a laptop for recoding the voltage output response from the piezoelectric transducer. The other
parameters related to the aeroelastic forces could not be determined, since Eqs (2) and (7) are empirical
equations on the assumption that the bluff body is a traditional cylinder without the slot at the lateral side.

3. Results and analysis

As aforementioned that the theoretical modelling method only validates under the assumption of using
the cylinder bluff body without the slot at the lateral side. Therefore, for the proposed energy harvester
using the slotted cylinder bluff body, the following analysis and result are all based on the experimental
results.

Figure 3(a) shows the time history response of the free-decay test when 𝜃 = 0°. Figure 3(b) shows
the frequency domain responses of the proposed energy harvester for various orientation directions of the
bluff body. The result of the case without slot is also provided. It is noted that the change in the orientation
direction of the bluff body i.e., 𝜃 results in the variation in the natural frequency of the proposed energy
harvester. This can be explained by that for different orientation, the bluff body (i.e., the through slot) has
different moment of inertia.

For different wind speed, Fig. 4 shows the voltage output responses of the proposed energy harvester
with different orientation of bluff body. It can be observed that after the introduction of the slot, the
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Fig. 3. Free decay test: (a) Voltage history; (b) Natural frequencies of different models.

Fig. 4. Experimental results (a) voltage versus wind speed, (b) dominant oscillation frequency versus wind speed.

performance of the harvester is dramatically changed. Furthermore, the orientation of the bluff body
i.e., 𝜃, has a crucial effect on the performance of the proposed energy harvester. Overall speaking, the
maximum output voltage increases with the increase of 𝜃. When the vortex shedding frequency gets close
to the resonant frequency of the proposed energy harvester, it becomes synchronized with the frequency
of oscillation, leading to the occurrence of self-sustained large-amplitude oscillation. The wind speed
range within which such synchronization phenomenon occurs is the termed as the lock-in region. For the
traditional energy harvester, the lock-in region is 1.5 m/s–4.5 m/s and the maximum open-circuit voltage
amplitude is approximately 4.5 V. For the proposed energy harvester with 𝜃 = 30°, the lock-in region
is 1.4 m/s–3.7 m/s. As compared to the traditional design without the slot, the lock-in region becomes
narrower and the maximum open-circuit voltage is reduced from 4.5 V to 2.7 V. For the cases of 𝜃 = 45°
and 𝜃 = 60°, the maximum open-circuit voltage amplitudes are 4.7 V and 5.1 V, respectively. The lock-in
regions for the two cases are almost the same as that of the traditional design. For 𝜃 = 90°, the maximum
voltage amplitude is increased from 4.5 V to 5.5 V as compared to the traditional design. Unfortunately,
the effective wind speed bandwidth is significantly reduced to 1.4 m/s–2.9 m/s.

It is worth particularly mentioning the case of 𝜃 = 0°. Though the maximum voltage amplitude is
significantly reduced to 1.5 V, an interesting phenomenon is observed. Different from the traditional VIV-
based piezoelectric energy harvester which only provides a single lock-in region for energy harvesting,
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with the increase of the wind speed, in the first phase the open-circuit voltage amplitude first increases,
then decreases within the range of 1.6 m/s–3.6 m/s. In the second phase, after the wind speed exceeds 4
m/s the open-circuit voltage amplitude increases monotonously with the increase of the wind speed. Thus,
the measured effective wind speed range covers from 1.8 m/s to 7 m/s.

It can be found that due to the presence of the slot, the proposed energy harvester breaks through the
traditional VIV based energy harvester that has a narrow lock-in region for realizing energy harvesting.
The potential explanation of the success of the proposed energy harvester for 𝜃 = 0° is that the
aforementioned first phase corresponds to the vortex-induced vibration phenomenon and the second phase
corresponds to the galloping phenomenon. Beyond a critical value larger than 4 m/s, the vortex-induced
vibration mode is transformed into galloping vibration mode. To prove this speculation, a fast Fourier
transform (FFT) is performed to analyze the dominant oscillation frequency of the proposed energy
harvester under different wind speed. Figure 4(b) shows the result for the case of 𝜃 = 0°. It can be found
that when the wind speed exceeds 5.6 m/s, the dominant oscillation frequency is exactly the same of the
fundamental natural frequency of the proposed energy harvester, which is a typical characteristic of the
galloping vibration. The intermediate phase between the VIV and the galloping phenomena is regarded as
the transition phase. To the authors best knowledge, it is the first time to report the realization of a hybrid
VIV-based and galloping based piezoelectric energy harvester.

4. Conclusions

This paper has proposed a slotted cylinder bluff body for being used in the design of a novel wind energy
harvester. A physical prototype has been manufactured and an experimental test has been performed to
evaluate the actual performance of the proposed energy harvester. A parametric study has been conducted
to investigate the effect of 𝜃 whose physical meaning is the orientation of the slot on the performance of
the proposed energy harvester. Relevant comments have been provided for guiding the selection of 𝜃. The
most important finding is that when 𝜃 = 0°, the vortex-induced vibration phenomenon first appears in the
first phase then the galloping phenomenon occurs afterwards in the second phase with the further increase
of the wind speed. The critical wind speed for the occurrence of the galloping phenomenon is just around
the upper bound of the lock-in region of the vortex-induced vibration phenomenon, therefore the overall
effective wind speed bandwidth for energy harvesting has been significantly increased.
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